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A new and efficient graphene oxide catalyst was synthesized in this study to 
prepare trisubstituted imidazoles. Graphene oxide was first modified with 
2-chloroethanol, and then treated with N,N,N,N-
tetramethylethylenediamine. After that, the obtained catalyst was 
characterized by XRD, FTIR, FESEM, EDAX, and TGA. The reported catalyst 
was utilized for the synthesis of trisubstituted imidazoles from benzil, 
aldehydes, and ammonium acetate. Reaction efficiently proceeded via a one-
pot multicomponent route under solvent-free conditions. Catalyst offered 
some advantages over reported ones such as sustainability, cost-
effectiveness, ease of handling, storage, and recovery, in addition to non-
metal structure. The reported procedure has a series of benefits, including 
medium conditions, high yields, no by-products, short reaction times, and 
easy work-up. Reported catalyst can be used in chemistry, material sciences, 
and related disciplines for diverse applications. 
© 2024 by SPC (Sami Publishing Company), Asian Journal of Green 
Chemistry, Reproduction is permitted for noncommercial purposes. 
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Graphical Abstract 

 
 
Introduction 

Catalysts are critical in the sustainable 

synthesis for several advantages, mainly 

environmental protection in the chemical 

industry. Chemistry and sciences focus on 

sustainability to design modern life without 

harming the ecosystems [1]. Non-metal and 

carbon-based catalysts are mainly 

environmentally benign. Numerous carbon-

based catalysts have been designed and used for 

the synthesis of various chemicals [2], among 

which graphene and graphene oxide are two 

necessary carbon materials with excellent 

properties, including flexibility for designing 

new and safe catalytic systems [3]. 

Multicomponent reactions paly an essential 

role in the design of sustainable reactions with 

better selectivity and yield and fewer by-

products [4-6]. The mentioned reactions are the 

best alternative for multistep reactions in 

designing safe organic reactions [7-9]. Another 

protocol for designing sustainable reactions 

involves no use of solvents, as toxic solvents are 

the primary source of harming the environment 

[10, 11]. Trisubstituted imidazoles are an 

essential class of heterocycles with a series of 

properties. A series of biological properties 

have been reported for them, for instance, 

antifungal, antitumor, analgesic, and 

antibacterial [12]. Some derivatives accelerate 

biosynthesis of interlukin-1, used as glucagon 

receptors, herbicide, and fungicide [13]. Then 

can be further used in material science as light-

sensitive materials as blue-light emitting 

materials, sensors, and fluorescent agents [14]. 

The significant properties of trisubstituted 

imidazoles have been addressed [15]. The one-
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pot, three-component synthesis via diketones, 

ammonium acetate and aldehydes are 

commonly used in the presence of appropriate 

catalysts [16]. Numerous catalysts including 

CoFe2O4@SiO2@(–CH2)3OWO3H NPs [17], 

graphene oxide-substituted sulfoacetic acid 

amide [18], NCP@SiO3PrNHPrSiO3TiO2 [19], 

graphene oxide functionalized diethanolamine 

sulfate [20], GO-TiO2 nanocomposite [21], 

sulfated magnetic cellulose nanoparticles [22], 

trifluoroacetic acid supported starch/graphene 

oxide nanocomposite [23], zirconium-based 

metal–organic framework (Zr-MOF) 

nanocomposites [24], RGO supported Au 

nanoparticles [25], sulfated polyborate [26], 

BNPs@SiO2-TPPTSA [27], and magnetic 

CoFe2O4/Ni-BTC based MOF composite [28] 

have been explored. These procedures suffer 

from some several drawbacks such as long 

reaction times, the use of toxic catalysts and 

metals, vigorous reaction conditions, low yields, 

boring purification process, and high amounts 

of wastes and by-products, necessitating the 

development of more sustainable procedures.  

In this study, graphene oxide-substituted 

tetramethylethylenediamine ammonium salt 

was prepared as an ionic catalyst and its activity 

was examined for the synthesis of 2,4,5-

trisubstituted imidazoles under solvent-free 

conditions with excellent yield.  

Experimental 

Reagents and chemicals were purchased 

from Merck chemical company which used as 

received. The products were characterized by 

comparing their melting points with previously 

reported ones. Silica gel SIL G/UV 254 plates 

were used to study the progress of reactions. 

JASCO FT-IR spectrometer was employed to 

record FT-IR spectra using KBr pellets. Melting 

points were also determined by an 

electrothermal apparatus. Bruker Avance DRX 

400 MHz spectrometer was utilized to afford 1H-

NMR and 13C-NMR spectra. Shimadzu model: 

XRD 6000 apparatus was used to record XRD 

patterns. The FESEM images and EDAX studies 

were further obtained using a TESCAN electron 

microscope. Thermogravimettric analysis (TGA) 

was conducted on catalyst using a TA apparatus 

(model Q600) in the range of 30 °C to 500 °C 

and heating rate of 10 °C.min-1 under argon 

atmosphere. 

Synthesis of graphene oxide substituted 2-

chloroethanol (GO@CE) 

Graphene oxide was prepared according to 

the modified Hummers method [29]. Graphene 

oxide (1.0 g) was suspended in THF (30 mL) 

and the mixture was sonicated for 60 min. to 

afford a colloidal solution. Then, 2-

chloroethanol (0.7 mL), triethylamine (0.8 mL) 

and DCC (0.5 g) was added to the solution. The 

reaction mixture was stirred at room 

temperature for 30 h followed by adding DMSO 

(30 mL) and hot filtration. The precipitate was 

washed with hot ethanol, hot deionized water 

and acetone several times and dried to afford 

GO@CE as a black fine powder.      

Synthesis of GO@CE-TMEDA.Cl catalyst  

Dimethylacetamide (30 mL) was added to 

GO@CE (1.0 g) and sonicated for 60 min. to 

afford a colloidal solution, and then 

tetramethylethylenediamine (0.5 mL) was 

added and the mixture was heated at reflux 

conditions for 24 h. Finally, the mixture was 

filtered and the precipitate was washed with 

dry chloroform several times, dried, and stored 

in a tight vial.   

General procedure for the production of 

trisubstituted imidazoles using the catalyst 

To benzil (1 mmol), aldehyde (1 mmol), 

ammonium acetate (2 mmol) and catalyst (0.02 
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g) were added. The mixture was heated in an oil 

bath for appropriate time and after completion 

(as indicated by TLC using n-hexane/ethyl 

acetate (3:1)) ethyl acetate was added and 

filtered hot. The catalyst was collected by the 

filter paper and mother liquor was stored at 

room temperature to crystallize trisubstitued 

imidazole product. The catalyst was recovered 

and reused for five runs (Figure 7).  

Spectral data of 3k 

1H-NMR (400 MHz, DMSO-d6) δ 5.33 (s, 2H), 

7.12-7.14 (m, 2H), 7.20-7.49 (m, 10H), 7.74 (t, J 

= 4 Hz, 2H), 8.00-8.02 (m, 2H), 8.25-8.27 (m, 

2H), and 12.51 (s, 1H) ppm. 13C-NMR (100 MHz, 

DMSO-d6) δ 158.5, 147.5, 146.0, 145.3, 136.8, 

132.0, 128.8, 128.8, 128.7, 127.4, 127.3, 124.2, 

124.0, 122.4, 115.5, and 68.6. 

Results and Discussion 

Preparation of catalyst 

Graphene oxide was prepared according to 

the modified Hummers method [29]. It was then 

functionalized with 2-chloroethanole in the 

presence of triethylamine and DCC in THF 

solvent (Scheme 1). The mixture was purified 

using filtration and washed with deionized 

water and ethanol, dried and treated with 

tetramethylethylendiamine in 

dimethylacetamide to afford catalyst (Scheme 

1). 

Characterization of catalyst and precursors  

Intermediates and final catalyst such as 

graphene oxide (GO), 2-chloroethanol-

functionalized graphene oxide (GO@CE), and 

GO@CE-TMEDA.Cl catalyst were characterized 

by reliable analytical methods such as FT-IR, 

XRD, FESEM, EDS, and TGA. 

 

Scheme 1. Production of GO@CE-TMEDA.Cl 
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FTIR spectra 

FTIR spectrum of graphene oxide showed 

stretching vibrations of carboxylic acid hydroxyl 

groups at ~ 3419 cm-1 and vibrations of 

carbonyl groups at 1720 cm-1. Moreover, the 

vibrations of etheric groups (C-O) appeared at 

1177 cm-1 [30]. FTIR spectrum of GO@CE is 

depicted in Figure 1a which shows frequency 

vibrations of hydroxyl of carboxylic acid groups 

at 3430 cm-1 [31], and vibrations of hydroxyls at 

3328 cm-1 [32]. Furthermore, vibrational 

frequencies of CH groups were detected at 2851 

cm-1 and 2926 cm-1 [33]. The peak appeared at 

1727 cm-1 can be also assigned to the carbonyl 

groups [34], while the bending vibrations of O-

H appeared at 1626 cm-1 [35]. The peak at 1575 

cm-1 indicates the vibrational frequencies of C=C 

bonds [36]. Furthermore, vibrational 

deformation of CH2 was detected at 1439 cm-1 

[37], whereas the bending vibrations of C-N are 

manifested at 1312 cm-1 [38]. Moreover, the 

band at 1241 cm-1 can be assigned to C-O-C 

bonds [39], while the frequencies at 1089 cm-1 

can be attributed to C-O bonds [40]. 

Furthermore, the peak at 649 cm-1 can be 

ascribed to C-Cl bonds [41].   

FTIR spectrum of GO@CE.TMEDA.Cl catalyst 

can be found in Figure 1b in which the 

vibrations of carboxylic acid OH bonds 

appeared at 3431 cm-1 [31]. Likewise, frequency 

vibrations of aliphatic CH bonds emerged at 

2925 cm-1 and 2856 cm-1 [33]. Vibrations of 

carbonyl groups emerged at 1713 cm-1 [34], 

while the vibrations of C-N and C=C bonds 

appeared at 1629 cm-1 [42]. Moreover, aromatic 

C=C vibrations appeared at 1573 cm-1 [43], 

whereas asymmetrical vibrations of CH2 

emerged at 1463 cm-1 [44]. Furthermore, the 

peak at 1112 cm-1 can be assigned to COO of 

ester, C-N and C-O ether bonds [45]. The FTIR 

spectra confirmed the structure of GO@CE and 

GO@CE-TMEDA.Cl. 

 

Figure 1. FT-IR spectra of a) GO@CE and b) GO@CE-TMEDA.Cl 
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XRD patterns 

XRD patterns of GO, GO@CE, and GO@CE-

TMEDA.Cl are presented in Figure 2. Based on 

Figure 2a, XRD of graphene oxide showed a 

sharp peak at 11o and a broad peak, 

determining reduced graphene oxide between 

18° to 22o [46, 47]. Moreover, the XRD pattern 

of GO@CE (Figure 2b) shows a sharp peak at 8° 

and 11o and several sharp and broad peaks 

between 15° to 33o implying the presence of 

more crystals with various d-spacing. Also, the 

XRD pattern of GO@CE-TMEDA.Cl in Figure 2c 

indicate some sharp peaks and two broad 

peaks. The sharp peaks determine the 

crystallinity with various d-spacing while the 

broad peaks showed the nano-sized non-

crystalline structures. 

Morphology of samples was studied by FE-

SEM images (Figure 3). FE-SEM image of 

GO@CE can be seen in Figure 3a which shows 

the graphene oxide sheets. FE-SEM image of 

GO@CE-TMEDA.Cl shows the graphene oxide 

sheets with more considerable distances due to 

its functionalization by 

tetramethylethylenediamine (Figure 3b).  

EDAX analysis (Figure 4) of GO@CE confirms 

the presence of carbon, oxygen, and chlorine 

and their percentage in the table. EDAX analysis 

of GO@CE-TMEDA.Cl shows carbon, nitrogen, 

oxygen, and chlorine and their percent. Thus, 

EDAX analysis confirms the preparation of 

GO@CE and GO@CE-TMEDA.Cl.  

Thermogravimetric analysis (TGA) of 

GO@CE-TMEDA.Cl was conducted under argon 

atmosphere from 30 °C to 500 °C (Figure 5). 

TGA diagram shows two main weight losses. 

The first weight loss is around 100 °C, probably 

due to evaporation of water and low molecular 

weight solvents [48]. Second weight loss at 160 

to 250 °C can be assigned to the isolation of 

functional groups [49]. The total weight loss 

and char yield are 27.24 and 72.76%, 

respectively. Therefore, the catalyst is stable 

under reaction conditions and can be used up to 

200 °C in various reaction processes. 

 

Figure 2. XRD pattern of a) GO, b) GO@CE and c) GO@CE-TMEDA.Cl 

mailto:GO@CE-TMEDA.Cl
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Figure 3. FE-SEM images of a) GO@CE and b) GO@CE-TMEDA.Cl 

 

Figure 4. EDAX analysis of a) GO@CE and b) GO@CE-TMEDA.Cl 

Synthesis of trisubstituted imidazoles using the 
catalyst  

GO@CE-TMEDA.Cl was utilized to produce 

2,4,5-trisubstituted imidazoles under solvent-

free conditions via benzil, aldehydes, and 

ammonium acetate. The reaction of diketon, 

aldehyde, and ammonium acetate is the most 

used route for the production of trisubstituted 

imidazoles [50]. This route was studied using 

various catalysts. According to green chemistry 

principles, it suffers from some disadvantages 

[51]. Therefore, this work focuses on the 

removal or minimize disadvantages, mainly, 

environmental problems by employing a new 

graphene oxide based catalyst. In order to find 

optimum conditions, four variables such as 

catalyst, time, solvent, and temperature are 

examined for production of 3b (Scheme 2, Table 

1). Optimized conditions for the production of 

imidazoles include 30 min., solvent-free 

conditions, 80 °C, 0.02 g of catalyst loading, and 

95% yield (Table 1, entry 10).  
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Figure 5. TGA analysis of GO@CE-TMEDA.Cl 

Table 1. Effect of catalyst (GO@CE-TMEDA.Cl) loading, temperature and time on the model reaction for the 

production of 3b 

Entry Solvent Catalyst (g) Temperature (oC) Time (min) Yielda (%)a 

1 EtOH - Reflux 90 trace 

2 EtOH 0.02 Reflux 90 83 

3 Water 0.02 90 90 45 

4 DMSO 0.02 100 90 49 

5 CH3CN 0.02 Reflux 90 76 

6 DMF 0.02 100 90 54 

7 MeOH 0.02 Reflux 90 79 

8 Solvent-free 0.02 100 60 98 

9 Solvent-free 0.02 90 40 96 

10 Solvent-free 0.02 80 30 95 

11 Solvent-free 0.01 80 30 84 

12 Solvent-free 0.005 80 30 78 

13 Solvent-free 0.01 70 30 72 

14 Solvent-free 0.02 70 30 87 

15 Solvent-free 0.03 70 30 88 

16 Solvent-free 0.02b 80 30 35 

aIsolated yield 
bGraphene oxide 
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The capability of GO@CE-TMEDA.Cl catalyst 

was explored in the synthesis of 2,4,5-

trisubstituted imidazoles from aldehydes 

(Scheme 2). Findings on the successful 

synthesis of 2,4,5-trisubstituted imidazoles are 

reported in Table 2 with a broad scope of 

functional groups, high yields, and sustainable 

conditions. Aldehydes with electron 

withdrawing-groups, and halogens offered 

higher yields of trisubstituted imidazoles 

compared to aldehydes with electron-donating 

substituents [52]. Electron-withdrawing groups 

accelerate nucleophilic attacks of ammonia on 

the carbonyl group by inducing a positive 

charge on the carbon of aldehyde. Moreover, 

they can facilitate water removal from the 

intermediate to attain final trisubstituted 

imidazole [53].  

As mentioned in experimental section, final 

products were characterized by comparing 

their melting points with previously reported 

ones. Likewise, Nuclear magnetic resonance 

(NMR) spectroscopy confirmed the structure of 

3k using DMSO-d6 as solvent and 

tetramethylsilane (TMS) as standard. 

 

 

Scheme 2. Synthesis of 2,4,5-trisubstituted imidazoles catalyzed by GO@CE-TMEDA.Cl catalyst 

Table 2. Synthesis of 2,4,5-trisubstituted imidazoles catalyzed by GO@CE-TMEDA.Cl catalyst 

 mp (oC) 

Entry R Product Time (min) Yield (%)a Found Reported 

1 H 3a 40 92 276-277 276-278 [54] 

2 4-Cl 3b 30 95 262-263 260-262 [54] 

3 2-Cl 3c 30 93 198-199 197-199 [55] 

4 4-MeO 3d 40 88 227-228 228-230 [54] 

5 2,4-diCl 3e 30 95 177-178 176-178 [56] 

6 4-F 3f 30 96 260-261 258-260 [55] 

7 4-Me 3g 40 87 229-230 228-230 [57] 

8 4-NO2 3h 30 96 202-203 200-201 [56] 

9 3-NO2 3i 30 97 301-302 297-300 [56] 

10 4-(CH3)2N 3j 45 86 256-257 255-258 [56] 

11 4-NO2-Ph-CH2O [58] 3k 45 85 216-217 215-216 [23] 

12 4-OH 3l 45 88 270-271 269-271 [54] 

aIsolated yield 
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Table 3. Calculated values of turnover number (TON) and turnover frequency (TOF) for 2,4,5-trisubstituted 

imidazoles 

Product TON TOF (min-1) Product TON TOF (min-1) 

3a 13.6 0.34 3g 13.4 0.33 

3b 15.6 0.52 3h 16.3 0.54 

3c 15.3 0.51 3i 16.5 0.55 

3d 14.3 0.35 3j 14.5 0.32 

3e 17.3 0.57 3k 18.99 0.42 

3f 15 0.50 3l 13.7 0.30 

 

To assess efficiency of GO@CE-TMEDA.Cl 

catalyst for production of trisubstituted 

imidazoles, turn over number (TON) and turn 

over frequency (TOF) values were calculated 

(Table 3). Turn over number (TON) was 

obtained using the equation: TON = product 

yield (g) / amount of catalyst (g) and turn over 

frequency (TOF) was afforded utilized the 

equation: TOF = product yield (g) / [reaction 

time (min) × amount of catalyst (g)] or TOF = 

TON / reaction time (min) [59].   

Mechanism of reaction  

A plausible mechanism of reaction is 

demonstrated in Figure 6. Ammonia was 

initially released from ammonium acetate and 

attacked to catalyst activated aldehyde to afford 

imine intermediate by releasing water (I), and 

then a second ammonia molecule attacked the 

imine to obtain II. In the next step, benzil (III) 

was attached by catalyst activated II via an 

adduct (IV) to achieve V. Ultimately, products 

were afforded by [1,5] hydride shift from 

intermediate V. 

 

Figure 6. Plausible mechanism of reaction 
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Reusability and durability of catalyst 

The recovery and reuse of the catalyst in the 

synthesis of 3b was explored for five runs to 

examine the stability of the catalyst under 

reaction conditions (in Figure 7) showed no 

vital changes in the catalyst recovery and reuse. 

Thus, the catalyst has sufficient stability and 

activity toward synthesizing 2,4,5-trisubstituted 

imidazoles. 

Comparison with other reported catalysts 

     The efficiency of the reported catalyst was 

evaluated by the synthesis of 3e using the 

reported catalysts and comparing that with our 

catalyst (Table 4) in terms of reaction time, 

solvent, temperature, and catalyst loading, and 

this catalyst has priorities over previously 

reported ones. 

    

 

Figure 7. Product yield of 3b and GO@CE-TMEDA.Cl catalyst recovery and reuse for five runs 

Table 4. Comparison with previously reported catalysts 

Entry Catalyst Time (min) Temp. (°C) Solvent Yields [Ref.] 

1 GO@CE-TMEDA.Cl (0.02 g) 30 80 solvent-free 95 [-] 

2 Fe3O4@SiO2-EPIMa (0.02 g) 25 100 PEG-200 91 [60] 

3 Cu/C (1 mol%) 180 100 PEG-200 91 [61] 

4 CoFe2O4 NPs (0.01 g) 25 USb, 40 EtOH 92 [62] 

5 UHPc (10 mol%) 240 Reflux EtOH 88 [63] 

6 Fe3O4@SiO2-Imid-PMA (0.03g) 75 110 solvent-free 9 1[64] 

7 MIL-101 (0.005 g) 8 120 solvent-free 95 [65] 

8 NiCoFe2O4 (0.004 g) 17 110 solvent-free 85 [66] 

9 LDH–APS–PEI–DTPA (0.005g)  65 Reflux EtOH 95 [56] 

10 MC–SO3H (0.012 g) 120 80 EtOH 83 [67] 

11 Fe3O4@SiO2-TMA-Me (0.005g) 45 Reflux EtOH 84 [68] 

12 Cu(II)/PL-COF (0.1 g) 2 MWd solvent-free 95 [69] 

aEpichlorohydrine-Imidazole 

bUltrasound 
cUrea-Hydrogen peroxide 
dMicrowave 
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Conclusion  

Graphene oxide functionalized 

tetramethylethylenediamine ammonium salt 

was prepared, characterized, and used as 

catalyst. Synthesis of 2,4,5-trisubstituted 

imidazoles was achieved successfully, using the 

catalyst, under solvent-free conditions via a 

one-pot reaction of benzil, ammonium acetate, 

and aldehydes. The developed catalyst offered 

several priorities over previously reported 

ones, including, nontoxic and carbon-based, 

recoverable under reaction conditions, easy 

handling and storage, and inexpensive. The 

reported process is sustainable and requires 

moderate conditions while offering high yields, 

and short reaction times. Considering the 

findings, the reported graphene oxide 

derivative can be employed in various fields in 

chemistry and material science.    
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